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Determining the dynamics of functional connectivity is critical for understanding the brain. Recent functional
magnetic resonance imaging (fMRI) studies demonstrate that measuring correlations between brain regions
in resting-state activity can be used to reveal intrinsic neural networks. To study the oscillatory dynamics that
underlie intrinsic functional connectivity between regions requires high temporal resolution measures of
electrophysiological brain activity, such as magnetoencephalography (MEG). However, there is a lack of
consensus as to the best method for examining connectivity in resting-state MEG data. Here we adapted a
wavelet-based method for measuring phase-locking with respect to the frequency of neural oscillations. This
method employs anatomical MRI information combined with MEG data using the minimum norm estimate
inverse solution to produce functional connectivity maps from a “seed” region to all other locations on the
cortical surface at any and all frequencies of interest. We test this method by simulating phase-locked
oscillations at various points on the cortical surface, which illustrates a substantial artifact that results from
imperfections in the inverse solution. We demonstrate that normalizing resting-state MEG data using phase-
locking values computed on empty room data reduces much of the effects of this artifact. We then use this
method with eight subjects to reveal intrinsic interhemispheric connectivity in the auditory network in the
alpha frequency band in a silent environment. This spectral resting-state functional connectivity imaging
method may allow us to better understand the oscillatory dynamics underlying intrinsic functional
connectivity in the human brain.

Published by Elsevier Inc.

Introduction

Measuring how neural regions interact is critical for understanding
the dynamics of the normal and disordered brain. “Functional
connectivity” is thought to reflect these interactions and is defined
as “the correlation between spatially remote neurophysiological
events” (Friston et al., 1993). Correlation is used as a measure of
functional connectivity based on the principle that if two neuronal
populations fire together, they are likely to be part of the same
functional circuit. Traditionally, changes in the correlations between
neural populations are measured across tasks or cognitive states.
Recently, it was discovered that the activity in regions forming task-
critical networks (for example the networks associated with visual,
auditory, memory, and sensorimotor functions Biswal et al., 1995;
Cordes et al., 2000; Vincent et al., 2006); correlate even when those
tasks are not being performed (when the subject is at “rest,” in light
sleep, or even sedated; see Boly et al., 2008; Fox and Raichle, 2007 for
reviews). Resting-state functional connectivity has garnered a great
deal of interest as a method for examining functional networks in a

“natural” state. This interest arises from two aspects of resting-state
functional connectivity. First, because these networks arise without
being driven by a task, this method has the potential to illustrate
fundamental aspects of the brain's intrinsic functional organization
(Fox and Raichle, 2007). Second, this lack of task can allow us to
examine functional connectivity in clinical populations where
behavioral responses may be abnormal (Greicius, 2008).

The majority of resting-state functional connectivity studies have
been performed using functional magnetic resonance imaging (fMRI).
Because of the relatively poor temporal resolution of fMRI (~.5–1 Hz
and below) these studies have been restricted to examining
correlations in slow resting-state oscillations. These studies have
demonstrated that there are strong correlations within functional
networks in the very low frequency (b.1 Hz) aspects of the resting-
state activity (Fox and Raichle, 2007). Correlations in this low
frequency band are surprising since most electrophysiological aspects
of neural activity occur at a much faster time scale. One likely
possibility that has emerged is that these very slow fluctuations in
large part reflect slow changes in underlying higher frequency neural
activity (He et al., 2008; Leopold et al., 2003; Mantini et al., 2007; Nir
et al., 2008). However, little is known regarding the exact nature of
correlated activity in these higher frequencies. To explore these faster
aspects of resting-state functional connectivity requires methods to
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examine interactions using electrophysiological measures of neural
activity that have a higher temporal resolution, such as magnetoen-
cephalography (MEG).

Methods for measuring functional connectivity in non-invasive
electrophysiological data have generally examined task/condition
differences in the correlation of the time–frequency response of the
neural activity arising from disparate brain regions (Jerbi et al., 2007;
Lin et al., 2004; Tass et al., 2003). These studies were designed to allow
researchers to make inferences about whether the task or cognitive
state modifies functional connectivity. For example, the spectrum of
interregional correlations has been examined before and after
learning (Duzel et al., 2005; Ghuman et al., 2008), compared across
attentional states (Gross et al., 2004), and for different visual stimuli
(Bar et al., 2006; Kaiser et al., 2004). Many of these approaches were
adapted from methods that have been used successfully to examine
functional connectivity using electrode recordings in animals (Engel
et al., 2001; Roelfsema et al., 1997; Varela et al., 2001).

There are many methodological issues that must be considered in
resting-state functional connectivity before adapting task-related
approaches to resting-state data. These issues appear because of the
lack of a within-subjects comparison condition in resting-state
studies. For example, when examining resting-state functional
connectivity between brain areas, one must take into account the
fact that some of the activity projected to each area originates from
common sensors. In task-based studies, crosstalk is somewhat
mitigated because it is present to some degree in all conditions and
is reduced when a comparison across conditions is performed.

Here we introduce a novel wavelet-based method for measuring
resting-state phase-locking between electrophysiological signals that
are measured non-invasively, but mapped onto the human brain, and
introduce normalization to reduce a major crosstalk artifact. Wavelet-
based analyses have the advantage of not requiring the data to be
stationary (Percival and Walden, 2000) and therefore are likely to be
more appropriate for non-stationary neural data than Fourier-based
methods. It should benoted thatwhileweprimarily discuss thismethod
for MEG, in principle it could be used for any non-invasive electrophys-
iological measure of brain activity, such as electroencephalography
(EEG). After describing the method, we use simulations to test the
spatial sensitivity and specificity of the functional connectivity on the
cortical surface. We use these simulations to examine a key artifact that
appears in non-invasive resting-state functional connectivity analyses
of electrophysiological data and demonstrate a procedure for reducing
much of this problem. Finally, we apply the method to examine the
spectral functional connectivity in the left (LH) and right hemisphere
(RH) auditory networkusingMEGwith eight subjects.While theseMEG
results are primarily used to validate the method, this is also the first
demonstration of connectivity between the LH and RH auditory cortices
in a true resting state. Previous studies have used fMRI to examine
connectivity in this network (Cordes et al., 2000), but fMRI cannot be
considered a true resting state for the auditory cortex because of the
noise the MRI machine produces; in contrast, MEG is silent.

Methods

The method for calculating resting-state functional connectivity
was adapted from the dynamic statistical parametricmappingmethod
developed by Lin et al. (2004). Specifically, the process involves six
steps: 1) artifact removal 2) selection of “seed” region of interest (ROI)
3) calculation of the inverse solution and projection onto the brain 4)
wavelet transformation of the signal 5) calculation of the phase-
locking values (PLVs; Lachaux et al., 1999) between the seed ROI and
every other location in the brain and 6) repeat steps 3, 4, and 5 with
empty room data and normalize the original PLVs by the empty room
noise PLVs to reduce crosstalk induced by the imperfect inverse
solution. Note that when a linear inverse operator is used, the order of
steps 3 and 4 does not matter.

Artifact removal

Removing artifacts due to heartbeats, eye blinks, eye movements,
and other non-neural sources is critical because some of these signals
can dwarf the neural component of the MEG data. The magnitude and
ubiquity of these distortions can result in spurious phase-locking and
correlation over large portions of the brain.

For artifact removal, we first visually inspected the data for any
respiratory artifacts. These artifacts are generally uncommon in MEG
data, particularly with the use of third-order gradiometer compen-
sation. However, if subjects havemetal on or in their persons that they
have not removed, or are unaware of, these artifacts can be substantial
(one subject in our study was excluded for this reason). We then used
a short-time Fast Fourier filter to band-pass the data 1–50 Hz. This
removed low frequency drift, any residual respiratory artifact, 60 Hz
line noise, and any DC offset.

Cardiac artifacts were removed using an independent component
analysis-based procedure following Liu et al. (2010). Briefly, the MEG
sensor data were decomposed into a number of independent
components (ICs) using EEGLAB (Delorme and Makeig, 2004). The
ICs was identified as being a cardiac artifact if the IC had a peak in its
autocorrelation coefficient corresponding to between .6 and 1.5 Hz,
the IC had a time course that contained periodic features that were
similar to those seen on an electrocardiogram, and had power in the
MEG sensors that experience suggested most often contained cardiac
features. Across our 8 subjects, between 1 and 3 cardiac ICs were
rejected and the remaining ICswere reassembled for further processing.

Typically, ocular-motor artifact rejection is accomplished by remov-
ing trials where eye blinks are evident and when there are spikes in the
MEG signal, which is impossible for a resting-state analysis because of
the lack of trials. Alternatively, artifacts are removed by removing
the component of the signal that corresponds to eye blinks or an
electrooculogram (EOG) channel using independent components
analysis (ICA) or principle components analysis (PCA). However, ICA/
PCA methods leave some residual MEG signal that corresponds to the
artifact. Because the MEG signal from eye blinks can be up to 10 times
themagnitudeof the brain signal this residual artifact signal can result in
false-positive functional connectivity.

To monitor ocular muscle activity we measured EOG along with
the MEG measurements. The EOG time courses were pseudo-Z
transformed into standard deviation (SD) units (by subtracting the
mean across the epoch and dividing by the SD). These data were
visually inspected and the minimum size of each subject's eye blinks
in these units was determined (mean=1.64 [in SD units], min 1.5,
max 2.0). Similarly, the MEG signal at each sensor was transformed
into SD units and points that exceeded a threshold of 5 SD from the
mean across the epoch were found. Centered about each point that
exceeded these thresholds, the data 300 ms before and 500 ms after
these points were excluded from further analysis (on average this
removed approximately 1200 ms per eye blink). These additional
windowsof datawere excluded so that sufficient pre- andpost-artifact
data were removed to ensure no artifacts remained in the analyzed
time courses. These conservative thresholds andwindows removed on
average 36% (SD=26%) of the time points across our eight subjects.

Removing these datapoints creates discontinuities in thewaveforms
because some contiguous points in the resultant data are not actually
contiguous in time. We tested whether these discontinuities cause any
undue negative consequences for the analysis by comparing the error
caused by removing 35% of simulated 12 minute scans two different
ways. Specifically, we either removed 1200 ms windows randomly
spread across the 12 min (i.e. simulating eye blinks and creating
discontinuities) or randomly selected a continuous 7.8-minute window
out of the 12 min (i.e. 65% of the data) for analysis. Comparing the error
caused by these two different methods relative to the entire 12-minute
window allows us to examine whether the discontinuities in and
of themselves were detrimental. We found that neither method for
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removing 35% of the data caused any bias in the phase-locking (beyond
the bias towards higher phase-locking due to the reduced degrees of
freedomwhichwas very small at all frequencies), though bothmethods
did cause errors. Comparing themagnitude of the errors for thedifferent
methods of removing 35% of the data, we found that below 3 Hz the
discontinuities caused significantly larger error compared to the
continuous 7.8 min. However, at higher frequencies no substantial
difference in the amount of error was seen. It should be noted that if
smallerwindows than the very conservative 1200 ms for each eye blink
is removed, the cutoff frequency at which substantially greater error is
present for the discontinuous data is higher than 3 Hz. This analysis
demonstrates that, for frequencies above 3 Hz, the discontinuities
caused by this method of eye blink removal does not cause substantial
negative consequences to the data.

This method of removing the timepoints when the EOG channel
exceeds a threshold is preferred to an ICA/PCA approach under most
circumstances because of the potential for false-positive phase-
locking due to residual eye blink signal with the ICA/PCA approaches.
However, there are two cases where the ICA/PCA approach may be
preferred. First, if the scientific question relates to oscillatory
dynamics below 3 Hz, then the discontinuities will cause substantially
excess error. Second, if a subject has excessive blinks resulting in
removal of too much of the data and the subjects are too valuable to
eliminate from the analysis (e.g. clinical populations).

Seed selection

Many methods exist for selecting the seed ROI. Seeds can be
chosen based on functional localization, anatomical landmarks, or
some combination of both. One critical factor is to ensure that ROIs are
chosen independently of the analysis of interest. For example, as
described in the example with real MEG data below, we chose our
seed ROIs based on an independent functional localizer to find LH and
RH auditory cortex. These locations were used as seed ROIs. The MEG
signal is averaged across each location in the seed ROI for the seed
time course.

Inverse solution

The location of the cortical current sources cannot be precisely
determined using themeasuredmagneticfields fromoutside the head.
Thus, we estimate the location of these sources with the cortically
constrained minimum norm estimate (MNE; Hämäläinen et al., 1993)
using the MNE™ software suite v2.7. Briefly, a linear inverse operator
W is applied to the measured signal to calculate the MNE

y tð Þ = Wx tð Þ

where x(t) is a vector that represents theMEGchannel data at time t and
y(t) is vector representing the corresponding current projected onto the
cortical surface. The estimated activity at each source location is a
weighted combination of all the data arising from all sensors (as it is for
most distributed source models). Thus, each source shares the same
underlying data to some degree; substantially so for sources that are
close together in the brain. This leads to “imperfections” due to the
inverse solutionwhere the activity innearby sources appears tobemore
similar than it actually is in the brain. The artifact caused by these
imperfections are discussed and addressed in detail later. The
expression of W is calculated using the L2 norm, which yields

W = RAT ARAT + λ2C
� �−1

:

where A is the free source orientation solution of the forward problem
calculated using the boundary element method. C and R are the noise
and source covariancematrices respectively. λ is a weighting factor that
is used to avoid themagnification of errors in the data andλ2≈(1/SNR).

We used a value of 3 for this, as is often done in MEG analysis
(Hämäläinen, MNE software user's guide version 2.7, 2009). R was
depth-weighted to overcome the superficial bias of the MNE with a
depth factor of .8 (Lin et al., NeuroImage, 2006). Furthermore, because
cortical neurons are known to be preferentially oriented perpendicular
to the cortical surface, we used a loose orientation constraint.
Specifically, the component of R normal to the surface was multiplied
by 1 and the components transverse to the surfacewasmultiplied by .4.
Typically in non-resting-state scans, MEGmeasurements that are taken
while the subject is in the scanner (butnot performing the task) are used
to calculate the noise covariance matrix (Hämäläinen et al., 1993).
However, this would reduce any spontaneous covariance in the data,
which is precisely what we wish to examine in studies of resting-state
functional connectivity (Lin et al., 2004). Thus, the noise covariance
matrix was calculated from 12 min of continuous empty room MEG
measurements collected immediately prior to putting the subject in the
scanner.

Here we use the MNE inverse solution to project our MEG data
onto the brain, however in principle any distributed source model for
calculating the inverse solution could be used in this procedure. For
example, beamformers, which are another type of inverse solution
method, could be used (Sekihara et al., 2001). However, in practice,
beamformers assume minimal covariance among sources for con-
straining the inverse solution. To implement this assumption they use
the neural data itself to build the covariance matrix and the process
removes spatial covariances in the data. This will remove precisely the
coupling between sources that we are trying to find when examining
functional connectivity.

The wavelet transform

The MEG data at each source location were spectrally decomposed
using a continuous wavelet transform by temporally convolving the
signal with a complex Morlet wavelet centered at each frequency of
interest f and at each time in the scanning run t, after artifact removal
(Lachaux et al., 1999). The Morlet wavelet is used because it has a
Gaussian window shape in both time and frequency while maintain-
ing a sinusoidal underlying structure. This wavelet structure yields
easily interpretable results in the time and frequency domain because
they yield qualitatively similar data as when a time-frequency
analysis is done with a Fourier transform (though the wavelet is
better suited for non-stationary data). TheMorlet wavelet is described
by the equation:

G t; fð Þ = 1ffiffiffiffiffiffiffiffi
2πf

p e

−t2

2σ2

 !
ei2πft

whereσ is the SD of theGaussian in the time domain. To ensure stability

of the wavelet transform σmust be at least
5

2πf
and here we set σ to be

7
2πf

. Because the wavelet convolution introduces Gaussian temporal

blurring with an SD of σ, the effective number of independent samples
(degrees of freedom for statistical tests) of the transformed time course

is
N−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π fsσð Þ2

q (Friston et al., 1995) where fs is the sampling frequency of

the data and N is the number of time points in the sample.
One questionwe examinedwaswhether a different inverse solution

(particularly a different noise covariance matrix) was required for
different frequencies. We found that using a broadband signal (band
passed to 1–50 Hz) or using the same frequency as we were examining
in the PLV calculation made negligible difference (the correlation coef-
ficient across source locations between these two different techniques
was greater than .95 across many frequencies and subjects). Thus, for
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simplicity, we used the same inverse solution, based on the broadband
signal, for all frequency bands.

Phase-locking

Resting-state phase-locking measures the variability over time of
the phase difference between the seed and the other cortical locations
(Lachaux et al., 1999; Lin et al., 2004). Specifically, the phase-locking
value (PLV) is defined as:

PLVl =
1
N j ∑Nn=1

ei θseed nð Þ−θl nð Þð Þj
whereN is thenumberof timepoints in thesampleand θseed(n) andθl(n)
are the phase of the wavelet convolved data in the seed ROI and the
cortical locations “l” respectively. The PLV varies between 0 (a random
phase relationship) and 1 (a consistent phase difference at all time
points).

Statistics

The statistical significance of the PLV in individuals can be calculated
using theRayleigh statistic (Fisher, 1993),where thedegrees of freedom
are the effective number of independent samples (as calculated above).
When examining the significance across subjects for PLVs between a
seed location and every other location in the brain, we first use a
normalization appropriate for Rayleigh distributed data. Specifically,we
took the square root of the PLVs, which we confirmed normalized
Rayleigh distributeddata usingD’Agostino's K2 test. A t-testwasused to
test for significance and the critical values were determined after
Bonferroni correcting for multiple comparisons (specifically, 273, the
number of functional sensors and the maximal number of independent
data sources according to information theory). When examining the
significance between ROIs a t-test was performed at each frequency of
interest. The critical values were determined after using a cluster-level
correction for multiple comparisons (described in detail in Maris and
Oostenveld, 2007). Briefly, all frequency points that were pb .05 were
found, clusters in adjacent frequencieswere found, and the sumof the t-
values in each cluster was determined (cluster “mass”). A distribution
was created by permuting the data and the statistical significance of the
cluster mass was determined. This method inherently controls for
multiple comparisons across frequencies because it has a global null
hypothesis.

Subjects

Ten subjects (6 males, mean age=26.8, SD=4.4) participated in
theMEG experiment. One subject was excluded due to unusually large
cardiac and respiratory artifacts and another subjectwas excluded due
to head movement in excess of .5 cm, thus eight subjects are included
in the analysis (5 males, mean age=24.7, SD=6.3). All subjects were
naïve to the goals of the experiment. The Institutional Review Board of
the National Institutes of Health approved all procedures and written
informed consent was obtained for all subjects. Subjects were
compensated for their participation.

Recording

Neuromagnetic responses were recorded at 600 Hz using a 275
channel whole head MEG system in a shielded room (VSM MedTech,
Ltd., Canada). The MEG is equipped with 275 radial gradiometers
and synthetic 3rd order gradient noise cancellation was used. Head
position coils were placed at the nasion and left and right preauricular
points to coregister the anatomical MRI and the MEG sensors. Head
position was determined at the beginning and end of each run to
ensure that head movements did not exceed .5 cm for any subject.

Eyeblinks and eye movements were recorded using a bi-polar EOG
electrode placed about each subject's left eye.

Structural MRI

Structural MRI images were obtained separately using a 3-Tesla
whole-body scanner (GESigna,USA). Ahigh-resolution T1-weighted3D
volumewas obtained for each subject. The MEG data were coregistered
with anatomical MR images using fiduciary headpoints. Freesurfer™
was used to create a cortical surface model for each subject using an
automatic reconstruction algorithm. The cortical white matter was
segmented providing a topologically correct representation of the
surface with approximately 150,000 vertices per hemisphere. The
cortical surface was then decimated to approximately 4000 source
dipoles per hemisphere, approximately 1 dipole every 10 mmalong the
cortical surface.

Behavioral tasks

Each subject first participated in a 12-minute rest-state scanwhere
their task was to fixate on a centrally presented cross. Subjects were
not given any details about later tasks during the rest-state scan.
Having subjects fixate is important in MEG (as opposed to subjects
having their eyes closed or eyes open unfixated), because this reduces
eye movement artifacts. Following the rest-state scan, the subjects
were presented with a series of button-press trials. Every 2 s, a white
fixation cross in the middle of the screen would change to green or
purple for 200 ms. The subjects were instructed to press a button with
their left index finger when the cross turned green and a different
button with their right index finger when the cross turned purple. The
subjects were presentedwith 70 trials in each condition. Finally, using
MEG compatible ear buds, the subjects were presentedwith a series of
auditory clicks trials binaurally. Each trial consisted of 500 ms of a
1910 Hz pure tone amplitude modulated at 40 Hz followed by
1000 ms of silence. The subjects were presented with 100 trials and
asked only to fixate on a centrally presented cross throughout the
experiment.

MEG analysis for functional localizer

The noise-normalized, dynamic statistical parametric mapping
procedure described in Dale et al. (2000) was used to estimate task-
related neural activity for each individual. This technique yields f-
distributed data that correspond to the significance of the activity at
each time point relative to the interstimulus period.

To localize LH primary motor cortex (M1), the locus of activity
about the central sulcus occurring between approximately 0 to
150 ms after subjects pressed the button with their right hand was
calculated. The portion of this activity anterior to the central sulcus
was used as the location of the LH M1 ROI for each subject.

To localize LH and RH auditory cortex, the activity between 50 and
550 ms after the onset of the auditory clicks was averaged. The
portion of the activity corresponding approximately to Heschl's gyrus
was used as the location of the LH and RH primary auditory cortex ROI
for each subject.

Results and discussion

Spatial sensitivity and specificity simulations

One major concern when employing a linear inverse solution with
electrophysiological data is that most inverse solutions act as a spatial
filter where the data projected onto each point in the brain is a
combination of the data derived from each sensor location (Hämä-
läinen et al., 1993). Therefore, some artifactual phase-locking will be
introduced because each source location shares some data with each
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other source location. An example of artifactual phase-locking intro-
duced by the imperfect inverse solution can be seen in Fig. 1a. To
generate this image, 8 min of empty room data were projected onto a
subject's cortical surface using the MNE inverse operator. Phase-
locking was then calculated for this empty room noise between a seed
ROI chosen in the LH sylvian fissure (near Heschl's gyrus; the green
dot in Fig. 1a) and every other source location on the cortical surface.
As can be seen, the PLV analysis of these empty room noise data
identified a cloud around the seed of significant phase-locking (pb .05,
corrected for multiple comparisons), even though there was no neural
signal between the seed and these other locations. To illustrate this
point, we graphed the PLV values for each dipole on the surface in
terms of their distance from the seed in the sylvian fissure (Fig. 2). As
can be seen, even out to 7 cm from the seed, false-positive PLVs are
seen in many dipoles (pb .05 falls within 1 standard deviation of the
mean PLV). One point to notice is that, though there is a general falling
off of the PLV by distance, the spatial distribution is extremely het-
erogeneous (the distribution is extremely non-uniform in Fig. 1a with
many local minima within the false-positive cloud and the standard
deviations are large in Fig. 2). This is because the amount of data
shared between sources is dependent on both the distance between
the sources and their relative geometries.

Can these false-positive PLVs be accounted for? Here we show that
much of the crosstalk arising from the imperfections in the inverse
solution can be removed if the PLVs calculated on empty roomdata are
subtracted from the PLVs calculated on neural data. To demonstrate
thiswe ran a series of simulationswhere the same datawere projected
onto a seed source in the LH sylvian fissure and onto a series of second
target sources pseudo-randomly chosen in the left hemisphere. The
form of this simulated signal was

q = ad sin f d2πd tð Þ

where t is time. The amplitude of the sine wave was chosen such that
the PLV between the seed and a RH auditory cortex ROI was
approximately .14 (similar to that seen in our MEG data below), this
corresponded to a=2.6·10−8 A m. The frequency of the sine wave
was chosen as 10 Hz, also corresponding to the peak frequency seen in
the MEG data below. Using the forward solution derived from the
subject's structural information and the boundary element model,
these data were then projected back onto the sensors. Noise was then
added which had the same covariance structure and amplitude as
measured empty room data. These data were then projected back
onto the cortex using the MNE inverse solution and the phase-locking
between the seed and target sources from which the data arose was
calculated. An example of this simulation is seen in Fig. 1b where the
sine wave signal is present in both the sylvian fissure and a frontal
pole location. We then compared the phase-locking values seen for

these simulated data with the values seen between the same sources
for empty room data without any simulated data. Fig. 1c shows an
example of the difference between the simulated and empty room
PLVs.

The difference between the simulated and empty room PLVs was
closely related to the PLV value seen in empty room data. Specifically,
where the phase-locking of empty room noise is the highest, the
difference between the PLVs for the simulated signal and the empty
room data is near zero. However, when the empty room PLVs dropped
below approximately .15 (which occurs when the sources are
separated by approximately 4–6 cm; Fig. 2), the phase-locking was
significantly larger for the simulated data than for the empty room
data. Thus, after normalizing by the empty room data, there is a cloud
of sources close to the seed location where the PLV is suppressed (i.e.
false negatives were seen in this cloud), after which the measure
becomes sensitive to PLV at approximately 4–6 cm. In these simula-
tions the false-positive rate fell to chance everywhere in the brain
except for adjacent to the target location. Note that, in task-based
studies of functional connectivity, comparing across conditions

Fig. 1. Examples of the artifact caused by the imperfect inverse solution and simulation of the correction for this artifact. a) Phase-locking for empty room data projected onto the
brain. A seed was placed in the LH sylvian fissure (green dot) and PLVs were calculated between this seed and every other location in the brain. A large cloud of significant PLVs is
seen even though there is no phase-locked signal emanating from the brain. This false-positive phase-locking occurs because, in most distributed source inverse solutions, the data in
each dipole on the brain is a linear combination of the data from all of the sensors (Hämäläinen et al., 1993). Therefore, a large cloud of dipoles shares a significant portion of their
data resulting in false-positive phase-locking. A threshold of .1 was used because this corresponds to a p-value of approximately .05 corrected for multiple comparisons. b) Simulated
resting-state phase-locking. A sine wave was placed in both the LH sylvian fissure (green dot) and the LH frontal pole (blue dot) and PLVs were calculated between the LH sylvian
fissure seed and every other location in the brain. Due to the false-positive phase-locking, it is difficult to differentiate the true phase-locking from the artifact. c) Subtracting panel a
from panel b demonstrates that when the false-positive phase-locking is accounted for, the true phase-locking can be detected.

Fig. 2. A systematic analysis of the artifact that results from the inverse solution. Phase-
locking values in empty room data as a factor of the Euclidean distance (rather than the
distance on the cortical surface) from a seed in the LH sylvian fissure. The means and
standard deviations of the empty room phase-locking data shown in this figure are
plotted for all dipoles in an annulus 0–1 cm from the seed, 1–2 cm from the seed, etc.
The red line is the PLV that corresponds to a p-value of .05 and the green line
corresponds to a p-value of .05 corrected for 273 comparisons (the number of
functioning sensors). As can be seen, there is a general trend for lower artifactual phase-
locking with increasing distance from the seed. Also note however that the standard
deviations across the dipoles at each distance are quite large demonstrating that this
artifact is not completely spatially uniform about the seed.
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similarly reduces much of the false-positive PLVs induced by the
imperfect inverse solution.

When examining functional connectivity using fMRI, generally the
correlation values are compared to the correlation expected for
random data. For electrophysiological data, however, significant
crosstalk between sources is introduced by the inverse solution, as
shown above. Thus, for these data, if the PLVs expected from random
noise were used as the null hypothesis the false-positive rate would
be high. However, by using the PLVs derived from empty room noise
as the null hypothesis, we trade this large cloud of false-positives (7–
8 cm) for a smaller false negative cloud (4–6 cm).

One potential concern is that the empty roomdatamay not have the
same properties as the resting-state data. This is critical because if the
phase distribution of the empty room data were different than the
resting-state data the empty room data may not accurately reduce the
crosstalk inherent in the inverse solution. The critical question is
whether the normalizing data and the resting-state data have the same
phase distribution, because the phase-locking method removes the
amplitude information. To address this concern we compared the PLV
for empty roomdata to phase shuffling the resting-state data.We phase
shuffled recorded resting-state data for 4 of our subjects and calculated
PLVs for 3 different frequencies (5, 10 and 20 Hz) and 2 different seed
regions (a total of 24 comparisons). This phase shuffling was done such
that the phase distribution of the datawas not changed after the shuffle.
The average correlation between the phase shuffled data and the empty
room data was .90 (standard deviation of .05). As a comparison, the
average correlation between different phase shuffles within the same
subjects was .92 (standard deviation of .04). This demonstrates that the
empty room noise has very similar properties as the resting-state data.
This is not surprising because over a 12 minute scan, both the resting-
state data and the empty room noise have a nearly uniform phase
distribution. Indeed, any randomdatawith a uniformphase distribution
could be used for this normalization. Empty room data is a convenient
choice because it needs to be recorded for the noise covariance matrix
and containsmany of the sources of noise present in MEG data. The fact
that any random data with a uniform phase distribution could be used
for normalization provides a potential way of using this method for
examining resting-state functional connectivity in EEGdatawhere there
is no direct equivalent of empty room data.More problematic for EEG is
that empty room data is not available for the noise covariancematrix in
the inverse solution, therefore the forward solution alone may have to
be used in EEG for producing the source estimate.

Resting-state functional connectivity in the auditory network

To demonstrate the efficacy of this resting-state PLVmethod on real
data, we first examined phase-locking between LH and RH primary
auditory cortex and for a control comparison between LHmotor cortex
and RH auditory cortex (Fig. 3a). We found larger PLVs between LH and
RH auditory cortex than between LH motor cortex and RH auditory
cortex in the alpha (~7–15 Hz) frequency range (p=.006 corrected for
multiple frequency comparisons). In contrast to the PLV results, greater
broadband power was seen in the LH motor cortex than in RH and LH
auditory cortex in all eight subjects. This excludes the possibility that the
greater PLV between RH and LH auditory cortex was due to greater
signal-to-noise ratio in the auditory cortex than the motor cortex (see
Ghuman et al., submitted for publication for a full discussion of the effect
of signal-to-noise ratio on correlation-based measures of functional
connectivity). The PLVs between LH and RH auditory cortex were also
greater for the resting-state data than for the empty room data in the
same frequency range (p=.034). Interestingly, alpha frequency band
activity in the primary auditory cortex has previously been shown to be
modulated following auditory stimulation (Basar et al., 2001; Lehtela
et al., 1997; Schurmann et al., 1997; Tiihonen et al., 1991; van Dijk et al.,
2010). Additionally, patients with tinnitus have been shown to have
abnormal alpha phase-locking at rest (Schlee et al., 2009). Thus,

previous studies have demonstrated that activity in the alpha frequency
bands is important to processing auditory information and here we
show that the same frequency band is also important to the intrinsic
functional connectivity in the auditory network.

We then examined the resting-state phase-locking between the
LH/RH primary auditory cortex and every other region in the brain.
We found that at 10 Hz (the peak of intrinsic phase-locking in the
auditory network), significant PLVs were seen between primary
auditory cortex and the contralateral auditory network. Specifically,
when the seed was in the LH primary auditory cortex, significant PLVs
were seen in contralateral primary auditory cortex (supporting the
result in Fig. 3b) as well as in the adjacent superior and middle
temporal gyri, the ventral part of the RH somatomotor strip, and RH
inferior frontal cortex (Fig. 4 left). When the seed was placed in RH
primary auditory cortex the PLVs were weaker and sparser for the RH
auditory seed than the LH auditory seed. However, significant PLVs
were still seen in contralateral primary auditory cortex, as well as the
adjacent superior and middle temporal gyri, and the ventral part of
the LH somatomotor strip (Fig. 4 right). We also examined the whole
brain functional connectivity to the LH/RH auditory cortex at 24 Hz, a
frequency that is not expected to show significant phase-locking
(Fig. 3b). Indeed, no significant resting-state phase-locking was
between RH or LH auditory cortex and any other region of the brain
(Fig. 5).

One thing to note is that these data also support the simulations
shown in Fig. 1 and 2. Specifically, if the raw PLVs are examined
without comparing to the empty room data, it is nearly impossible to
draw any conclusions due to the large cloud of false-positive PLVs
(Figs. 4 and 5). It is only when the statistical values of the resting-state
PLVs vs. the empty room PLVs are shown that the true resting-state
functional connectivity is seen.

One difference between the real data and the simulation is that
some residual significant phase-locking was seen near the seed for the
real data. This effect is clearly seen in Fig. 5 where the only significant
patches of phase-locking are around the seed locations. This result is
surprising given that the simulations suggested that, if anything, there
should be false negative PLVs near the seed. Thus, this phase-locking is
due to some factor that was not taken into account in the simulations.

Fig. 3. a) Map of the extent of the LH auditory cortex, RH auditory cortex, and LHmotor
cortex ROIs across the 8 subjects. b) Average phase-locking values with respect to
frequency. The average PLV between RH auditory cortex–LH auditory cortex during the
resting-state, RH auditory cortex–LH motor cortex during the resting-state, and RH
auditory cortex–LH auditory cortex for empty room data are plotted.
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Fig. 4. Resting-state phase-locking between LH and RH auditory cortex and the rest of the brain at 10 Hz. A t-test across 8 individuals of resting-state vs. empty room PLV reveals that
the LH auditory cortex shows significant (corrected for multiple comparisons) functional connectivity to RH primary auditory cortex as well as the adjacent superior and middle
temporal gyri, RH inferior frontal cortex, and the ventral part of the somatomotor strip. Functional connectivity starting from a seed in the RH auditory cortex is weaker and sparser
(though still significant), compared to the LH auditory cortex seed. Specifically, RH primary auditory cortex demonstrated significant functional connectivity to LH auditory cortex,
the adjacent superior and middle temporal gyri, and a region that straddles the ventral part of the somatomotor strip. Much as in the simulated and empty room data (Figs. 1 and 2),
the mean resting-state PLV across 8 subjects is difficult to interpret because of the large artifact due to the imperfect inverse solution. Much of this cloud remains for the mean empty
room PLVs across the 8 subjects (empty room data was collected prior to each subject's session). The auditory network connectivity is only revealed for the statistical test of the
resting-state vs. empty room phase-locking.

Fig. 5. Resting-state phase-locking between LH and RH auditory cortex and the rest of the brain at 24 Hz. No regions showed significant resting-state phase-locking vs. empty room
phase-locking except for small regions close to the seeds. This is because the mean PLV at 24 Hz between the RH and LH auditory cortex was similar for the resting-state and for
empty room data (Fig. 3b). Thus, almost the entire resting-state PLV cloud at 24 Hz is due to the artifact caused by the crosstalk in the inverse solution.
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One possible source of discrepancy is inaccuracies in the forwardmodel
that cause the simulation to deviate slightly from the real data. The fact
that the patch around the seed location appears in both Figs. 4 and 5,
but not in the simulation, makes an inaccuracy in the forward solution
a likely possibility, rather than an artifact in the signal that would
likely be frequency specific. Regardless, adhering to a rule of thumb of
excluding PLVs within 4–6 cm of the seed will eliminate this concern.

More generally, it is critical to note that normalization by the empty
room noise does not eliminate all possible sources of crosstalk. There
may be other artifacts that cause crosstalk, such as inaccuracies in the
forward model, unaccounted for physiological noise such as muscle
artifacts or movement artifacts not removed using the noise reduction
procedures described above, and other artifacts that arise from the
neural data having a different noise covariance structure than the empty
room data. These sources of crosstalk were not present in the simulated
data (Fig. 2). Thus, although crosstalk is greatly reduced by using the
empty room normalization, many sources of crosstalk still must be
considered. Becausemost sources of crosstalk are located spatially close
to the seed and target locations, it will be largely removed by excluding
all PLVs between sites 4–6 cm or less apart. Nevertheless, it is certainly
possible for artifactual crosstalk to occur even beyond 6 cm.

What about amplitude?

So farwehave concentratedon examiningphase relationships as the
measure of functional connectivity. A potentially complementary
method for measuring functional connectivity is amplitude correlation.
Indeed, coherence, which is ameasure of the linear correlation between
all properties of waveforms, is a combination of both amplitude cor-
relation and phase-locking. We calculated amplitude correlation by
taking the absolute value of the wavelet-transformed data and
performing a Pearson's correlation over time between pairs of signals.
Significantly greater amplitude correlationwas seenbetweenLHandRH
auditory cortex than between LH motor cortex and RH auditory cortex
in the alpha frequency range (Fig. 6a; p=.04 corrected for multiple
frequency comparisons), similar to the PLV results (Fig. 3). However,
when examining the amplitude correlation at 10 Hz between the LH/RH
auditory cortex seeds and every other dipole on the cortex, the auditory
cortex dipole contralateral to the seed failed to survive a correction for

multiple comparisons based on the number of MEG sensors (Fig. 6b). In
fact, most of the dipoles that survivedmultiple comparisons were close
to the seed and, due to their proximity to the seed, are potentially
artifactual. Thus, the amplitude correlation results differed from the PLV
results in twoways. First, the amplitude correlation in cross-hemisphere
auditory network was relatively weak compared to phase-locking. This
may be because of the well-described property of weakly coupled
oscillatory systems: phase-locking tends to be more sensitive to their
coupling thanamplitude correlation (Pikovsky andRosenblum, 2007). It
is somewhat surprising that no amplitude correlation was seen as they
have been described in the resting-state for data collected using
intracranial EEG (He et al., 2008; Nir et al., 2008). However, intracranial
EEG has a much higher signal-to-noise ratio than non-invasive
measures of neural activity and thus may overcome the relatively
poor sensitivity of amplitude correlation. Second, even afternormalizing
by the empty room data, much greater artifactual crosstalk was seen
close to the seed. It is not clear why this occurred, however one
possibility is that artifacts other than the crosstalk inherent in the
inverse model are greater for amplitude correlation than for phase-
locking. Thus, because amplitude correlation is less sensitive to “true”
coupling and because greater potentially artifactual amplitude correla-
tion close to the seed is seen, phase-locking may be better suited for
measuring functional connectivity in MEG.

Conclusion

We have described a method for detecting and describing the
oscillatory dynamics of functional connectivity in MEG resting-state
data projected onto the brain.We examined the spatial sensitivity and
specificity of this phase-locking technique using simulated data and
showed how to use empty room data to account for much of the
crosstalk that arises due to the imperfect inverse solution. We then
applied this technique to show that the auditory network displays
resting-state functional connectivity in the alpha frequency bands,
even in a silent environment. This finding further demonstrates the
importance of accounting for the crosstalk induced by the inverse
solution. These simulations and data suggest that our method may
be useful for exploring functional connectivity in electrophysiological
data.

Fig. 6. Resting-state amplitude correlation in the auditory network. a) The average Pearson's correlation between RH and LH auditory cortex and between RH auditory cortex and LH
motor cortex as a factor of frequency. Significantly greater amplitude correlation was seen in the alpha frequency range between RH auditory cortex and LH auditory cortex than
between RH auditory cortex and LH motor cortex (similar to the phase-locking between these regions; Fig. 3b). b) Resting-state amplitude correlation between LH and RH auditory
cortex and the rest of the brain at 10 Hz. No regions of the auditory network contralateral to the seed region showed significant resting-state vs. empty room amplitude correlation
(after correcting for multiple comparisons). The only regions of significant amplitude correlation were ipselateral and relatively close to the seeds. Due to the relative proximity of
these regions to the seeds, it is difficult to rule out the possibility that this is artifactual amplitude correlation resulting from inaccuracies in the forward model or other crosstalk
artifacts.
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